Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lancet Microbe ; 5(4): e317-e325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359857

RESUMO

BACKGROUND: There has been high uptake of rapid antigen test device use for point-of-care COVID-19 diagnosis. Individuals who are symptomatic but test negative on COVID-19 rapid antigen test devices might have a different respiratory viral infection. We aimed to detect and sequence non-SARS-CoV-2 respiratory viruses from rapid antigen test devices, which could assist in the characterisation and surveillance of circulating respiratory viruses in the community. METHODS: We applied archival clinical nose and throat swabs collected between Jan 1, 2015, and Dec 31, 2022, that previously tested positive for a common respiratory virus (adenovirus, influenza, metapneumovirus, parainfluenza, rhinovirus, respiratory syncytial virus [RSV], or seasonal coronavirus; 132 swabs and 140 viral targets) on PCR to two commercially available COVID-19 rapid antigen test devices, the Panbio COVID-19 Ag Rapid Test Device and Roche SARS-CoV-2 Antigen Self-Test. In addition, we collected 31 COVID-19 rapid antigen test devices used to test patients who were symptomatic at The Royal Melbourne Hospital emergency department in Melbourne, Australia. We extracted total nucleic acid from the device paper test strips and assessed viral recovery using multiplex real-time PCR (rtPCR) and capture-based whole genome sequencing. Sequence and genome data were analysed through custom computational pipelines, including subtyping. FINDINGS: Of the 140 respiratory viral targets from archival samples, 89 (64%) and 88 (63%) were positive on rtPCR for the relevant taxa following extraction from Panbio or Roche rapid antigen test devices, respectively. Recovery was variable across taxa: we detected influenza A in nine of 18 samples from Panbio and seven of 18 from Roche devices; parainfluenza in 11 of 20 samples from Panbio and 12 of 20 from Roche devices; human metapneumovirus in 11 of 16 from Panbio and 14 of 16 from Roche devices; seasonal coronavirus in eight of 19 from Panbio and two of 19 from Roche devices; rhinovirus in 24 of 28 from Panbio and 27 of 28 from Roche devices; influenza B in four of 15 in both devices; and RSV in 16 of 18 in both devices. Of the 31 COVID-19 devices collected from The Royal Melbourne Hospital emergency department, 11 tested positive for a respiratory virus on rtPCR, including one device positive for influenza A virus, one positive for RSV, four positive for rhinovirus, and five positive for SARS-CoV-2. Sequences of target respiratory viruses from archival samples were detected in 55 (98·2%) of 56 samples from Panbio and 48 (85·7%) of 56 from Roche rapid antigen test devices. 98 (87·5%) of 112 viral genomes were completely assembled from these data, enabling subtyping for RSV and influenza viruses. All 11 samples collected from the emergency department had viral sequences detected, with near-complete genomes assembled for influenza A and RSV. INTERPRETATION: Non-SARS-CoV-2 respiratory viruses can be detected and sequenced from COVID-19 rapid antigen devices. Recovery of near full-length viral sequences from these devices provides a valuable opportunity to expand genomic surveillance programmes for public health monitoring of circulating respiratory viruses. FUNDING: Australian Government Medical Research Future Fund and Australian National Health and Medical Research Council.


Assuntos
COVID-19 , Influenza Humana , Metapneumovirus , Infecções por Paramyxoviridae , Vírus Sincicial Respiratório Humano , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Influenza Humana/diagnóstico , Teste para COVID-19 , Austrália , Metapneumovirus/genética , Vírus Sincicial Respiratório Humano/genética , Sequenciamento Completo do Genoma
2.
Artigo em Inglês | MEDLINE | ID: mdl-30349419

RESUMO

BACKGROUND: Staphylococcus aureus has a high prevalence in chronic rhinosinusitis (CRS) patients and is suggested to play a more etiopathogenic role in CRS patients with nasal polyps (CRSwNP), a severe form of the CRS spectrum with poorer surgical outcomes. We performed a microbial genome-wide association study (mGWAS) to investigate whether S. aureus isolates from CRS patients have particular genetic markers associated with CRS with nasal polyps (CRSwNP) or CRS without nasal polyps (CRSsNP). METHODS: Whole genome sequencing was performed on S. aureus isolates collected from 28 CRSsNP and 30 CRSwNP patients. A mGWAS approach was employed using large-scale comparative genomics to identify genetic variation within our dataset. RESULTS: Considerable genetic variation was observed, with > 90,000 single nucleotide polymorphisms (SNPs) sites identified. There was little correlation with CRS subtype based on SNPs and Insertion/Delection (Indels). One indel was found to significantly correlate with CRSwNP and occurred in the promoter region of a bacitracin transport system ATP-binding protein. Additionally, two variants of the highly variable superantigen-like (SSL) proteins were found to significantly correlate with each CRS phenotype. No significant association with other virulence or antibiotic resistance genes were observed, consistent with previous studies. CONCLUSION: To our knowledge this study is the first to use mGWAS to investigate the contribution of microbial genetic variation to CRS presentations. Utilising the most comprehensive genome-wide analysis methods available, our results suggest that CRS phenotype may be influenced by genetic factors other than specific virulence mechanisms within the S. aureus genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA